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Executive Summary

Public adoption and use of Artificial Intelligence (AI)-based systems have peaked in recent
months due to the introduction of highly accessible AI tools and systems and the
commercial trial of general multi-modal models such as GPT-3, Claude, LaMDA, Bard, and
Stable Diffusion. Although AI was initially swamped with breathless marketing claims, its
less glamorous potential harms—in the form of menacing or ethically questionable screeds
emerging from these systems—have begun to emerge. With creators in many domains
looking to quickly leverage this technology, consumers and the general public are at a loss
as to how they are impacted, and whether these systems are safe and production ready.

Novel safety, socio-economic, and ethical harms arising from the deployment of AI-based
systems have led to a breadth of work seeking to map, measure, and mitigate against
newly found risks. These works have heavily leveraged techniques and terminology from
the fields of System Safety Engineering and Cybersecurity, yet they have fallen short in
accounting for the limitations and nuances that reduce the efficacy and correct application
of adopted methodologies. Furthermore, misuse of terminology entailing compliance with
established safety and security properties can mislead stakeholders with regard to the
claims an AI system satisfies and provide a false sense of safety.

In this paper, we seek to align overlapping, AI-adjacent communities on a consistent and
comprehensive assurance terminology crucial for the safe deployment of AI-based
systems. We outline why previous attempts to adapt risk assessment techniques and
terminology from the safety and security fields have been insufficient. We then propose a
novel end-to-end AI risk framework that integrates the concept of an Operational Design
Domains (ODD), initially introduced for ADS (Automated Driving Systems) [1], for more
general AI-based systems. The purpose of an ODD is to provide a description of the specific
operating conditions for which an AI-system is designed to properly behave, thus outlining
the safety envelope for which system hazards and harms can be determined against. We
believe that by defining a more concrete operational envelope, developers and auditors
can better assess potential risks and required safety mitigations for AI-based systems.

This position paper seeks to be of interest to people in several broad groups. This paper is
of most interest to those seeking to assure AI systems such as AI engineers, AI
policymakers, AI auditors, and those intending to safely integrate AI systems into their
operations or products. More broadly, we hope it appeals to members of the public who
wish to understand the prospects of AI assurance and safety in the midst of marketing
hype and exaggerated commercial messaging. Finally, we hope it informs those who may
work in adjacent fields, who want to understand the complex trends of AI assurance and
safety.
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Overall, this paper provides the following key points and takeaways:

1. Distinguishing Safety and Alignment. The AI community, conflating requirements
engineering with safety measures, has allowed those building AI systems to abdicate
safety by equating safety measures with a system meeting its intent (i.e., value
alignment). Yet, in system safety engineering, safety must center on the lack of harm
to others that may arise due to the system intent itself.

2. Limitations of Hardware Methodologies. Risk assessment techniques adopted from
hardware safety (e.g., Failure Modes and Effects Analysis, Fault Tree Analysis) in the
AI community are not suitable for AI-based systems. Attempting to measure safety
properties of these systems through techniques developed under the assumption of
random failures is not conducive to uncovering the design issues that directly lead
to their systematic failures.

3. Scope of Safety vs. Security. The aim of safety is to prevent a system from impacting
its environment in an undesirable or harmful way, typically to protect human lives,
the natural environment, or assets. The aim of security, on the other hand, is to
prevent often-adversarial environmental agents or conditions from impacting a
system in an undesirable or harmful way. Therefore, safety risk frameworks may be
more appropriate for exploring harms posed by a system (e.g., machine learning
[ML] models) compared to threat modeling, which aims to protect a system from its
external environment.

4. Use of System Safety Engineering. We recommend the use of more relevant
system-level risk assessment frameworks such as MIL-STD-882e to build AI-specific
risk frameworks on (see 5). More general systems engineering and software risk
assessment frameworks have an expanded scope that aims to address hazards,
harms, and systematic considerations crucial to software or AI, such as general
system failures and emergent behaviors.

5. Assessing Safety through Operational Design Domains.
a. The majority of algorithmic assessments aim to audit general properties of a

system without considering its operational envelope. The lack of a defined
operational envelope for the deployment for general multi-modal models
has rendered the evaluation of their risk and safety intractable, due to the
sheer number of applications and, therefore, risks posed.

b. We propose the integration of ODDs into a risk framework, where we define
a novel ODD taxonomy relevant to the use of AI technologies, including
general multi-modal models. The use of ODDs can guide in understanding
the constraints under which the AI system may no longer behave as intended
or how it can escape its designated safety envelope.
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1. Introduction

Despite recent demonstrations of ever-increasing performance and ability across general
domains, ML (Machine Learning) models have not only demonstrated a lack of robustness1

in their outputs, but their performance and capabilities have proved difficult to measure
[15, 27, 33]. Furthermore, the lack of clearly defined requirements and adequate risk
analyses has led to safety hazards and novel socio-economic and ethical harms
accompanying the deployment of Artificial Intelligence (AI)-based systems [4, 10, 27]. Yet
few actionable or sufficient methodologies and mitigations have been defined to
systematically address these hazards and harms, largely due to the fact that proposed AI
risk frameworks and appropriate evaluation metrics have been insufficient in quantifying
and qualifying novel AI failure modes and harms.

Frameworks aside, a lack of cohesion on baseline terminology, such as the distinction
between “safety” and “alignment,” has led to contradictory approaches that improperly
equate safety measures with a system meeting its intent, which can result in drastically
different outcomes when constructing risk and hazard assessments. Indeed, despite
AI-related works adapting and citing well-established system safety and security
techniques, safety and risk terminologies have diverged from their established use and
meaning. Therefore, In Section 2, we aim to align overlapping and AI-adjacent communities
toward consistent and comprehensive terminology, which is crucial for the safe
deployment of AI-based systems.

In Section 3, we outline how previous attempts to adapt hardware, cybersecurity, and
system safety risk and safety techniques have been insufficient, and discuss nuances
regarding fundamental issues that limit the direct application of said techniques to AI risk
assessments. Subsequently, in Section 4, we propose a novel assurance approach that
outlines a comprehensive risk assessment framework that overcomes many of the
discussed limitations. In particular, the lack of a defined operational envelope for general
multi-modal models has rendered the evaluation of their risk and safety intractable, due to
the sheer number of risks posed. We propose the use of Operational Design Domains [1]
(ODDs) within AI risk assessments, where we define a novel AI-based ODD taxonomy to
allow for the exploration of a  wide range of scenarios and their associated risks. The
consideration of the ODD categories and their interactions helps operationalize risks under
a selected application domain; aiming to help developers and auditors build confidence
that an AI-based system has addressed its safety risks.

1 It has been argued that a lack of robustness may be an inherent property to the way in which
current ML models are constructed (e.g., Deep Neural Networks) [37]
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2. Distinguishing Value Alignment, Safety, and Risk

Despite AI-related works adapting and citing well-established system safety and security
techniques, various terminology has been misconstrued in its use and meaning. In this
section, we seek to align the community on the terminology used, as a lack of consistent or
intentional definitions compromises the integrity of the safety and security techniques the
ML community seeks to adapt. Furthermore, the lack of alignment on the quantification of
safety prevents the systematic execution of safety protocols necessary for preventing
identified [4, 6, 44] and novel harms produced by AI-based systems.

2.1 Conflating ‘Value Alignment’ and ‘Safety’
The term “safety” has come to have a multitude of definitions within AI, which vary based
on the context and the community. These definitions have not fully captured the broader
meaning of “safety” used within the fields of Systems and Safety Engineering, and may in
fact be a direct contradiction to it. Within the context of AI communities, some have
defined “safety” as the prevention of failures due to accidents [3, 35], while others refer to
the field of Alignment, aiming to steer AI systems toward human-oriented values and goals
[23, 8]. Not only are Alignment measures subjective at best, but they fundamentally
conflate safety properties with system requirements, which are well-established engineering
concepts. Compare the following established definitions:

● Value Alignment [8]: AI systems should be designed so that their goals and
behaviors can be assured to align with human values throughout their operation.

● System Requirement: A statement that translates or expresses functionality to
satisfy intent or stakeholders’ needs.

Given that intent and stakeholders’ needs are subjective human values, the term “Value
Alignment” is a specific type of a system requirement. This confusion of terminology is not
trivial, but rather critical, considering the definition of “safety” often deployed for
safety-critical systems:

● Safety: To prevent a system from impacting its environment in an undesirable or
harmful way, typically aiming to protect human lives, natural environment, or
monetary assets.

That is, safety concerns are derived based on hazards or harms posed by a system meeting
its specifications, where safety functionality is introduced to reduce the frequency (or
probability) of the hazardous event or harms and/or its consequences that may occur.
Conflating requirements engineering with safety measures has allowed those building AI
systems to abdicate safety by equating safety measures with a system meeting its intent. In
system safety engineering, safety must center on the lack of harm to others that may arise
due to the intent itself, or failures arising in an attempt to meet said intent (e.g.,
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implementation failures). The definition of alignment used across AI literature is thus not
sufficient to adequately address safety and harms posed by AI-based systems, nor should it
be considered a subset of safety. Even if the value alignment is specified to prevent harms
and biased outputs according to a given cultural context [39], safety processes requiring
risk assessments and additional oversight are necessary regardless of how relatively “good”
the system intent may be. Undesirable or unexplored safety concerns [4, 44] will still arise
from an AI system meeting well-intentioned specifications (as they do with safety-critical
systems), especially given their complexity, scale, and unknown failure modes.

In Section 3.3, we describe how safety requirements are derived from risk assessments,
and in Figure 1 below we provide an illustrative example of a system requirement for an
Automated Driving Systems (ADS) and a safety requirement that may be derived from it.

Figure 1: Demonstration of a system requirement, with an associated safety requirement to prevent
risk of collision

The precise definitions of these terms also impacts the efficacy of techniques adopted from
hardware, cybersecurity, and system safety engineering, as these methodologies were
created with the distinction between requirements and safety, and the definitions
discussed further below, in mind. In the remainder of this paper, we use the term “safety”
as intended by system safety engineering.

2.2 On Risk Terminology
The terms “hazards,” “risks,” and “threats” additionally appear in various AI literature, and
are often used interchangeably despite having different connotations in the fields from
which they are derived.

● Hazards are conditions that can result in a system producing harm or undesirable
effects to health, life, assets, or the environment.

● Risks are assessed within the context of the probability and severity of the hazard
becoming reality.

● Threats are more specific to the security domain, where an undesirable event can
affect the confidentiality, integrity, or availability of the system under consideration.
In practice, threats can lead to or be considered as a type of hazard, especially when
carrying out security-informed-safety assessments [36].
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Although details regarding risk assessments are described further in Section 4.2, we
provide an informal illustrative example derived from [20] to demonstrate the distinction
between hazards and risks in Figure 2 below. A detailed example can be found in Figure 4.

Figure 2: Demonstration of hazard and its associated risk through severity and likelihood

Discussions regarding why hazards, and not accidents or failures, are used to assess risk
can be found in [24] and provides further context as to why safety is typically not defined
as the prevention of failures due to accidents, as is done in [3, 35]. The relationship
between individual failures and accidents is not obvious and may be difficult to determine.

We note that risk management frameworks (e.g., ISO/IEC DIS 42001, ISO 9001:2015) are
distinct from risk assessments, yet they are often conflated. Risk management is a
continuous process to help an organization identify and manage all potential organizational
risks. Risk assessments are systematic methodologies that identify, evaluate, and report
system risks (e.g., NIST SP 800-30), and are a component of a larger risk management
system. Risk management frameworks are beyond the scope of this paper.

2.3 On Faults, Failures, and Failure Modes
For completeness and clarity, we additionally define the terms “failure,” ”error,” and “fault,”
as they are central to risk assessment frameworks. These terms do not have consistent
meanings across standards and domains; here, we follow the common use as defined by
ISO/IEC/IEEE 24765:2017.

● Errors are erroneous states of the system or human actions that produce an
incorrect result.

● Faults are a manifestation of an error in a software system.

● Failures are a termination of the ability of a system to perform a required function
or its inability to perform within specified limits. A failure can be produced when a
fault is encountered.

● Failure modes are a function manifestation of a failure.
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We will use the definitions mentioned above in the remainder of this paper, and we
similarly hope that those looking to evaluate safety and risk for AI-based systems will adopt
the intended definitions to ensure the integrity of their analyses.
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3. Pitfalls in Existing Adoptions and Approaches

Various AI-related works have progressively looked to well-established safety and security
techniques in an attempt to apply the same methodologies to ML models and their
datasets [13, 26, 31, 33, 34, 45, 46]. Adoptions of safety-related techniques, such as Failure
Modes and Effects Analysis (FMEA), bug bounties, security threat modeling (i.e., DREAD),
and red teaming have been proposed. Unfortunately, due to silos between communities
and implicit knowledge held by safety and security practitioners, nuances regarding
fundamental issues that limit the application of safety and security techniques to explore AI
risks have been lost. This includes the context and processes where specific techniques are
intended to be applied within a system life cycle, or the misconstruing of scope and output
of these methodologies. Additionally, these works do not provide sufficient detail to fully
operationalize the proposed risk modeling approaches to construct comprehensive
assurance claims regarding an AI-based system.

Other works have aimed to collate all possible hazards and harms posed by ML models
[44]. However, such works do not facilitate or capture how these harms apply to specific
domains or systems, their consequential effects, their probability of occurrence (e.g., risk),
or how one can operationalize processes for finding the listed harms.

In this section, we outline the pitfalls of referenced or adapted techniques from hardware
safety, security, and systems and software safety engineering, including how their
limitations and intended applications impact their suitability for use in AI-based systems.
Overall, most of these works often point to the adoption of specific techniques without
taking into account the larger context and processes in which they are intended to be
deployed, or the type of risks they are designed to address.

3.1 Limitations and Use of Hardware Safety Techniques
Works such as those in [34] have explored the use of risk modeling from safety-critical
domains but neglected to differentiate that hardware safety risk techniques (e.g., FMEA)
differ from those of general system safety and software engineering techniques—for good
reason. A major limitation in adapting hardware techniques is that although hardware
behavior is deterministic, hardware failures are based on measured random failures of a
hardware component (e.g., malfunction with electromechanical components due to
radiation). That is, we have clear expectations regarding the functions of parts, and have an
understanding of the failure rates metrics (i.e., Mean Time Between Failures, Mean Time To
Failure) and the average repair time of hardware components. Additionally, the emphasis
on parts failure entails that emergent system-level failures are not accounted for. Analysis
of system behavior and failure modes are thus not within the scope of techniques such as
FMEA.
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Contrarily, the software safety community itself has recognized that software failures are
systematic and not random (e.g., a race condition due to two threads wrongly accessing a
shared variable at the same time) [21]. ISO 26262:2018 defines software systematic failures
to have a “certain cause that can only be eliminated by a change of the design, …
documentation or other relevant factors.” Generally, the systematic nature of software
failures is directly linked to the intended system behavior and functionality [7, 24].
Attempting to measure the safety properties of software components through random
failures is not only technically infeasible, but also not conducive to uncovering the systemic
design issues that directly lead to systematic failures. Moreover, the increasing scale and
complexity of software2 has led to software systems seemingly behaving in
non-deterministic ways, requiring different approaches from those used to analyze
deterministic and bounded hardware behaviors. This is further discussed in the next
section.

The issues of applying hardware safety techniques to ML models thus suffer from similar
and even further limitations than those for software. Works such as [12] address in great
detail why component reliability is insufficient for AI safety, even if applied to AI
sub-components. The non-deterministic behavior of ML models and their ever-increasing
scale and complexity make such hardware techniques inapplicable to measure the
functionality, dependability, and performance of these systems, let alone their use to
uncover novel safety harms and ethical implications that are systematic and emergent in
nature.

Hardware safety risk techniques such as FMEA aim to target only component-level defects,
and they are intended to be deployed within a more general risk framework that subsumes
system behavior. More general systems engineering and software risk assessment
frameworks [42, 20] have an expanded scope that aims to address hazards, harms, and
systematic considerations crucial to software or AI, such as general system failures and
emergent behaviors. We discuss such techniques in Section 3.3 and in further detail in
Section 4.

3.2 Limitations and Use of Cybersecurity Techniques
A key point that the AI community has overlooked pertains to why safety and security
communities take differing and sometimes opposing approaches in their risk assessments
or threat modeling, respectively. The aim of safety is to prevent a system from impacting its
environment in an undesirable or harmful way, typically aiming to protect human lives, the
natural environment, or assets by assessing the functionality, performance, dependability,
and operability of a system. The aim of security, on the other hand, is to prevent often
adversarial environmental agents or conditions from impacting a system in an undesirable

2 It’s very likely that those looking to adapt hardware techniques may have been additionally misled by terms in
the literature such as Software FMEA (i.e., SFMEA or SFMECA) that are typically specific to Programmable Logic
Controllers (PLCs) and Field Programmable Gate Arrays (FPGAs), which are often too low-level to be considered
as such among software and AI developers.
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or harmful way, aiming to protect the confidentiality, integrity and availability of the
information system.

Works such as [13, 31, 46] have looked at adapting cybersecurity practices to uncover
hazards or harms for AI-based systems. AI bug bounty programs have been proposed [46]
as an attempt to identify and rank risks of harms (rather than vulnerabilities) through
security-like threat scoring techniques such as DREAD [38]. However, security threat
modeling in general is not suited for measuring hazards and potential harms imposed by
AI-based systems. Safety risk frameworks are more appropriate for exploring harms posed
by a system (e.g., ML models), rather than threat modeling, which aims to protect a system
from its external environment. Take, for example, the use of risk measures adopted from
threat scoring. There is a variety of literature noting that security threat scoring frameworks
are not developed with academic rigor and yield risk scores that are subjective [19, 38]. It is
also important to note that scoring frameworks such as DREAD and Common Vulnerability
Scoring System (CVSS) aim to measure the severity and likelihood of vulnerabilities, rather
than model the threats of a system on the design level, i.e., at a systematic level.

That is not to say that we should not consider security threat modeling techniques, as they
can indeed prevent adversarial cases that compromise the confidentiality, integrity, and
availability of a system and can further allow the manipulation of ML models to cause
harm. There are also overlapping properties between safety and security, such as the
consideration of privacy issues associated with the collection and use of human data and
the lack of consent for the subjects of ML models [6, 43]. Works such as those in [30]
appropriately articulate a threat model for ML that considers privacy within an adversarial
framework. However, if safety and harms are the main concerns, safety risk frameworks
can often subsume threat models—recall that a threat can be considered as a type of
hazard. Security threat modeling can be deployed in the context of a larger safety risk
assessment framework, where they can in turn provide feedback and lead to safety harms
(i.e., security-informed-safety [36]).

Other works use the term “red teaming” in the context of large language models (LLMs). In
cybersecurity, the intent of a red teaming exercise is to realistically test an organization’s
capability to detect and respond to a staged adversarial attack, and to assess and validate
security posture and attack resilience. However, the term in AI has come to refer to probing
an LLM for harmful outputs, only to update the model latently [13, 31, 29]. These works do
not measure the readiness of an LLM to actively combat adversarial inputs (i.e., security),
but rather explore potential harms posed by the model (i.e., safety). The likely appropriate
technique intended for use in [13, 31] is boundary or stress testing, a verification technique
that aims to test edge-cases or fringe inputs that may lead to unknown failure modes and
potential hazards.

Understanding the appropriate terminology and frameworks from which we derive
techniques is not an issue of pedantry, but allows those seeking to adopt safety and
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security techniques to understand the taxonomy and existing methodologies that may
better aid them in the validation and verification of LLMs or general multi-modal models.
Furthermore, misuse of terminology entailing compliance with established safety and
security properties, without actually achieving the rigor implied by them, can mislead
stakeholders with regard to the claims an AI system satisfies and may provide a false sense
of assurance and safety.

3.3 Limitations and Use of System Safety Engineering and Software
Safety
As previously noted, traditional software failures are systematic, and thus cannot be
measured at random. Furthermore, the scope of failure modes possible in software
systems differs from that in hardware (i.e., random versus systematic). Unfortunately, there
has been little work [12, 20, 47] within the AI community to adapt more general techniques
from either the system safety engineering or the software safety community, despite the
complexity of these systems being more similar to that of AI. In this section, we look to
processes and techniques used within the system safety engineering and software safety
community that can be leveraged and adapted to promote safe AI deployment and risk
assessment.

Within a safety-critical system, safety-related sub-systems are designed to reduce the
frequency (or probability) of hazardous events that may arise when a system meets its
specifications or executes its intended functionality. To identify these system hazards, it is
necessary to carry out a hazard and risk analysis on hazards or harms, their prevention or
mitigation, and performance criteria that define the tolerable risk allowed. For the hazards
that require risk reduction measures, a safety function must then be created to meet a
specified target Safety Integrity Level (SIL)3 for implementation4. SIL is a measure of system
safety performance, in terms of probability of failure on demand (pfd). The safety functions
must then meet their target SIL, typically based on an established standard.

Contrary to the standard hardware safety practice of using measured random failures to
determine the safety of components, the established solution for software systems is to
intentionally build robust software systems by applying increasingly rigorous techniques to
meet a SIL to reduce the risk factor of a probability of a failure. This is a concept typically
known as “Production Excellence” (PE)5, where software developers aim to satisfy and
certify against SIL criteria outlined in standards such as IEC 61508:2010, DO-178C, and ISO
26262:2018. We note that a hazard analysis and PE are not the only risk exploration or risk
reduction measures in a safety assessment. Other techniques, such as System-Theoretic
Process Analysis (STPA) [24] or safety-cases [7], are additionally necessary to analyze

5 Production Excellence is also applicable to hardware and Control & Instrumentation systems.

4 For control and instrumentation systems, this is where techniques such as Fault Tree Analysis (FTA) and FMEA
are deployed to determine the SIL.

3 Terminology for SIL may differ according to the industry, and include ASIL and DAL.

Trail of Bits 13 Khlaaf, Heidy 2023
PUBLIC



emergent behavior and the safety properties that arise from complex sub-system
interactions.

Despite the well-established effectiveness of safety methodologies and risk assessment
approaches for software safety-critical systems, there are two major limitations when lifting
these techniques to AI-based systems:

1. It is challenging to identify and determine the tolerable risk for a specific hazardous
event or harm within a risk assessment, as the scale and stochastic nature of ML
models means that novel and nondeterministic failures (including ethical failures)
for AI-based systems cannot be quantified as they have been for control and
instrumentation systems, or in software-based practices such as site reliability
engineering (SRE).

2. Many of the techniques that allow us to build confidence in the robustness of the
system (e.g., static analysis, formal verification, comprehensive testing) are not
applicable or transferable to the analysis of ML models, with equivalent techniques
yet to be developed or still underway [9].

Even if sufficient formal techniques existed, the use of such methods is based on the
assumption that we can determine the functional properties of a system by the way we
design and implement it. Only following rigorous recommended techniques, such as those
provided in [22] or IEC 61508:2010, will not adequately eliminate the probability of failures,
as is the case for even the most complex software systems; since the design of an ML
model determines only how it learns, but not what it will learn (i.e., its behavior).

Again, this is not to say that applying such techniques to software infrastructure is not
important; in fact, research has shown that systematic software failures of AI infrastructure
can propagate and affect the functionality and performance of ML models (such as where a
Not a Number (NaN) code error caused uncontrolled acceleration) [17, 41]. However,
formal methods must expand beyond system design to data lineage to appropriately
address the behavior of ML models. Here, proposed techniques such as [14, 18, 26] would
be most applicable to extend the concept of PE to help reduce the risk factor of harms
explored. That is, the intention of PE is to help alleviate risk, rather than identify it.

Works such as [20] adapted the more relevant system-level risk assessment framework
MIL-STD-882e [42], accompanied by a newly defined set of Hazard Severity Categories
(HSC), harms, and losses to accommodate novel harms associated with the use of LLM
APIs. Unfortunately, details in [20] on how to operationalize such a risk assessment across
a multitude of applications are unclear, especially with consideration of general
multi-modal models such as GPT-3, Claude, LaMDA, Bard, and Stable Diffusion. Although a
list of “hazard sources” (e.g., Application, System Design, Regulatory and Legal Oversight) is
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noted, the sources are too general to derive a systematic approach to identify hazards and
harms.

In the next section, we outline a blueprint toward comprehensive risk assessments and
assurance of AI-based systems that is intended to mitigate against some of the limitations
discussed—in particular, to operationalize risk modeling to construct comprehensive
assurance claims regarding an AI-based system. This will guide the appropriate
determination of the criticality and harms posed by AI-based systems, which can then allow
for effective application of PE and safety and security techniques.
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4. Unifying Risk Assessment and Safety Justification

In this section, we propose a novel systematic risk assessment approach, similar to that
described in Section 3.3, but adapted for AI-based systems. We propose a system-level risk
assessment to not only define criteria to help determine the tolerable risk allowed, but also
to guide system design in order to reduce the frequency of the hazards and harms
identified. Our work aims to help developers and auditors build confidence that an
AI-based system has adequately addressed its safety risks in its implementation and
deployment, so far as is reasonably practicable [2].

4.1 AI Operational Design Domain
We propose the integration of the concept of an Operational Design Domain [1], initially
introduced for ADS, into risk assessments for more general AI-based systems (e.g.,
multi-modal models) (see Figure 3). The purpose of an ODD is to provide a “description of
the specific operating domain(s) in which an automated function or system is designed to
properly operate.” Baseline ODDs and scenario analyses are used to identify important
functional and safety capabilities. Despite its success within the field of autonomous
vehicles, defining an operational envelope to better assess potential risk and required
safety functionality has not been at the forefront of the AI algorithmic audit and assurance
communities [9, 45]. Indeed, although ADS are AI-based systems, ODDs have not been
generalized or extended beyond automotive specific attributes (e.g., physical
infrastructure, environmental conditions) to be applicable to a more general class of AI
systems.

The majority of algorithmic assessments aim to audit general properties of a system
without considering its operational envelope. Although this may be self-evident for some
use cases of AI-based systems, the lack of ODD for general multi-modal models has
rendered the evaluation of their risk and safety intractable due to the sheer number of
applications and therefore, risks posed. This lack of an ODD also prevents those designing
or deploying an AI-based system from understanding the constraints under which the
system no longer behaves as intended or can escape its designated safety envelope. For
example, an ADS which can be safely deployed on a highway in clear weather does not
mean it can be deployed on city roads or in adverse weather conditions.

Consider type certification in aviation; certification and risk assessments are carried out for
the approval of a particular vehicle design under specific airworthiness requirements (e.g.,
Federal Aviation Administration 14 CFR part 21). There is no standard assurance or
assessment approach for “generic” vehicle types across all domains. It would be contrary to
established safety practices and unproductive to presume that the formidable challenge of
evaluating general multi-modal models for all conceivable tasks must be addressed first.
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Figure 3: AI ODD Taxonomy with the baseline categories and sample subcategories for illustrative
purposes

ODDs are intended to be used across an entire system’s life cycle, but in this work we focus
on their integration into risk assessments, as many stakeholders using AI technologies may
not be involved in their development process (i.e., external users). Note that [1] do not
provide guidance on how ODDs can be integrated into risk frameworks. To integrate ODDs
into a risk framework, it is necessary to define a novel ODD taxonomy relevant to the use of
AI technologies, including general multi-modal models. We define a baseline taxonomy
below that is subdivided into categories and subcategories, as is done in [1]. We provide
justifications or definitions for each category (and subcategories where appropriate). This
taxonomy provides a baseline to account for variations of operational envelopes where an
AI-based system is used or deployed, and can be built on with further categories or
subcategories that may be suitable for the system or organization. A complete ODD
taxonomy will include the following:

● Application/Domain: Given the applicability of AI systems across all application
domains, it is important to be able to map risks against specific applications in order
to better determine high-stakes areas or potential harmful impacts. We provide
examples of subcategories below, but the area should ultimately be defined to best
reflect where a system is deployed for an application domain. For general
multi-modal models to be deployed across many domains, a risk assessment must
be carried out for each intended use (i.e., per application). Even if risks are
applicable across multiple domains, the source and consequences of a potential
harm can be reflected differently across each application.
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○ Arts & Culture
○ Automotive & Transportation
○ Communications
○ Conservation
○ Finance & Economics
○ Government & Civics
○ Human Health
○ Journalism and Media
○ Law
○ Manufacturing and Commerce
○ Marketing, Advertising, and Microtargeting
○ Opportunity and Livelihood
○ Productivity and Education
○ Safety-Critical and Infrastructure
○ Security and Defence
○ Science, Technology, Engineering, and Mathematics
○ Social and Political Advocacy

● Users/Agents: Users or human agents within an AI system life cycle have taken on
varied and complex roles, often with an unclear purpose or goal. For example, the
use of humans for corrective measures (i.e., fine-tuning, data labeling) has been
viewed as a way to shift accountability to a “Human In The Loop” (HITL) and to claim
that an AI-system is inherently value-aligned as a means to overlook further safety
measures [28] (recall the discussion in Section 2.1). However, as shown in [10],
human bias infiltrates all aspects of data use, and regardless of where a HITL is
placed within an AI system life cycle, the lack of detail regarding the role a human is
expected to play obscures the risks their use (or lack thereof) may bring about. [11]
lays out a comprehensive typology of possible roles intended to clarify the purpose
and intended output of a human. We consider these defined roles below for our
ODD under “HITL” given that human factors integration has always been a pillar of
the safety of complex critical systems. System safety engineering has always
recognized the importance of human-machine interactions to the overall safety and
functionality of the system.

Aside from HITL, there are numerous risks to privacy and confidentiality in AI-based
systems that have long been discussed. Ongoing scrutiny has particularly  been
associated with the collection and use of human data [30], the potential risks for
bias and discrimination, and lack of consent for the subjects of ML models [6, 43].
Therefore, we include these human subjects in our ODD taxonomy, in addition to
agents that develop or deploy AI-based systems, given the importance of
understanding hazards and harms beyond model performance.
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○ End user
○ Model user
○ Model subject
○ Data subject
○ Data owner
○ Model owner
○ Data Labeler - Training
○ Human In The Loop (HITL) [11]

■ Fine Tuning & Corrective
■ Resilience
■ Justificatory
■ Dignitary
■ Accountability
■ Stand in
■ Friction
■ Warm body
■ Interface link

● Vector: The vector or attack surface is an important attribute to consider when
assessing the scope and mitigations for hazards or harms. Additionally, a system’s
interfaces and how users or agents interact with it, implicitly or explicitly, can help
identify the reach or cascading effects of hazards or harms derived from a specific
interface vector. We build on the vector or surface introduced in [30], where
systems using ML models are viewed as a generalized data processing pipeline. This
includes consideration of how features are collected from data repositories, how
data is processed in the digital domain and used by a model to produce an output,
and how the output is communicated to an external system or user and acted upon.
This is particularly relevant for assessments analyzing function and system-level
component hazards.

○ Physical or Physical-Infrastructure
■ Sensor
■ Cyber-physical
■ Corporeal

○ Data
■ Training data
■ Test data
■ Input data

○ Model
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■ Architecture and algorithm
■ Parameters and Hyperparameters
■ Source Code
■ Trained model representation

○ Software Infrastructure
○ Interface

■ UI/UX
■ APIs
■ I/O

○ Deployment and Distribution
■ Management
■ Monitoring
■ Maintenance

● Protected Characteristics [16, 28, 32]: Given that the majority of harms identified
by the deployment and use of ML models disproportionately affect protected
groups [4, 6], it is necessary to consider these harms in every aspect of an AI
system’s life cycle. These characteristics should be expanded to consider further
geographical and cultural contexts (see discussion in [39]).

○ Age
○ Birth
○ Class or Caste
○ Descent
○ Disability
○ Gender identity
○ Genetic information
○ Health status
○ Language
○ Marriage and civil partnership
○ Migration status
○ National, ethnic, or social origin
○ Political/other opinion
○ Pregnancy and maternity
○ Property, birth, other status
○ Race
○ Religion or belief
○ Sex
○ Sexual Orientation
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● Assets: As discussed in Section 3.2, cybersecurity risks are still prevalent and may
impact the safety of a system. It is important for an organization to account for the
confidentiality, privacy, integrity, and availability of its assets in order to fully
understand and address the risks and impacts for at least the following:

○ Compute
○ Data
○ Tooling
○ AI system components and subcomponents
○ Human Resources
○ Monetary
○ Physical

Note that there is overlap between the subcategories of each category (e.g., Data). The
overlap between such subcategories should be considered given the definition and the
intention of the category that subsumes it. We encourage those deploying AI-based
systems to consider defining further categories and subcategories beyond these baseline
ODDs where relevant to their own practice domain (e.g., [1]). For example, an ODD may
optionally include value-alignment properties, such as those noted in Sensitive Topics or
Sentiment Positions for Social Context in [39]. Recall that many of the attributes defined in
value-alignment literature are more suitable for system requirements. We believe that
further refined operational domains will allow stakeholders to identify more granular risks
relevant to their application and use of AI-based systems. We refer to [1] for examples of
how to further refine categories with an ODD taxonomy.

4.2 Operationalizing Risk Assessments
A common challenge encountered when performing a hazard analysis is comprehensively
identifying hazards given consideration of all possible and relevant scenarios [25]. In this
section, we demonstrate how an ODD can be used to systematically identify risks once the
relevant taxonomy has been defined or identified. The defined ODD categories and
subcategories must be considered, even if they are not perceived as risks. The goal of the
risk assessment is then to identify the risk within a defined operational envelope or
scenarios.

We build on the risk framework defined in [20] given its novel definitions of HSCs, harms,
and losses tailored for the use of general multi-modal models. Hazards are, by definition,
linked to specific types of harms or losses that stakeholders identify. As in traditional
system risk assessments, we use a Hazard Risk Index (HRI) as a metric to note the risk for
each hazard. As noted in Section 2.2, an HRI (i.e., risk) is based on the product of the
probability of a hazard condition against its severity. Quantitative data or a quantitative
probability guide with corresponding qualitative metrics (i.e., Frequent, Probable,
Occasional, Remote, Improbable) can be used. The HSCs, losses, and HRI utilized are
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available in Appendix A for reference. Recall that both determining and mitigating for
probabilities of failures in AI-based systems is an open problem, since the design of an ML
model determines only how it learns, not what it learns (i.e., its behavior). The
determination of a likelihood of a hazard or harm is beyond the scope of this paper, and
requires the development of sophisticated techniques from machine learning to social
science to guide the development of adequate risk metrics relevant to specific subject
domains [5, 9, 27].

Risk assessments are carried out at various levels of abstraction, such as product
specifications, architecture and design, implementation, hardware components (e.g.,
FMEA), and operation and maintenance. The assessments are typically split among
multidisciplinary teams with different backgrounds such as policy, safety, security,
engineering, and law, to ensure comprehensive coverage of potential harms and hazards.
We refer to the list of “hazard sources” in [20] (e.g., Application, System Design,
Regulatory—as a preliminary breakdown. As noted in Section 3.3, hazard analyses should
not be used as the sole technique for risk exploration. For AI-based systems,
complementary techniques equivalent to “Production Excellence” such as [14, 18, 22],
should also be considered or integrated into the risk assessment process.

Given the above, the ODD can be seen as a consideration of various permutations of the
categories to effectively explore a  wide range of scenarios and their associated risks. With
an identified application domain and a system abstraction scope defined for the risk
assessment, assessors should enumerate through all categories and subcategories and
consider all hazards that may arise due to their interaction. This can be best illustrated with
the example figure below, where each hazard has an associated field for each ODD
category. We provide three distinct examples of hazard entries across varying application
domains and levels of abstraction of the system.

Figure 4: Demonstration of hazard entries within a hazard analysis using ODD categories (colored)
as fields for consideration
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Note that in Figure 4, the “HRI” and “Mitigation” fields have been omitted for presentation
purposes. The HRI for each hazard assists in understanding how the risks compare to each
other, and the priority with which each hazard must be controlled. “Mitigations” describe
specific actions that would reduce the associated HRI for a hazard. Action points arising
from mitigations comprise the associated system safety requirements (e.g., Figure 1) that
accompany system or operational requirements. With each set of mitigations
implemented, the HRIs should be recalculated, and the process should be repeated until all
undesirable risk is eliminated for the safe deployment of an AI-based system. A risk
template for use with the corresponding ODD categories is available in Appendix A, Table 3.
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5. Conclusive Remarks

In order to build and deploy safe AI-based systems, it is important to align on key
terminology and techniques in order to level the playing field on assurance objectives and
how they can be achieved. For example, a lack of cohesion on baseline terminology such as
the distinction between “safety” and “alignment” has led to contradictory approaches that
incorrectly equate safety measures with requirements. This can lead to drastically different
outcomes when constructing risk assessments, and misaligned principles and goals. We
outline a consistent and comprehensive terminology and discuss fundamental issues with
the adoption of hardware, cybersecurity, and system safety techniques that limit their
direct application to AI risk assessments.

Finally, we propose a novel assurance approach that overcomes some of the discussed
limitations for AI risk assessment through the use of ODDs, a concept initially introduced
for automated driving systems. To integrate ODDs into a risk framework, we define a novel
ODD taxonomy relevant to the use of AI technologies, including general multi-modal
models. The taxonomy is subdivided into categories and subcategories, with categories
including Application/Domain, Users/Agents, Vector, Protected Characteristics, and Assets.
These categories allow for the exploration of a wide range of scenarios and their associated
risks. We believe that by defining a more concrete operational envelope, developers and
auditors can better assess potential risks and required safety mitigations for AI-based
systems.
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Appendix A

Description Category Definition (Mapped to Table 2)

Catastrophic 1
Death, permanent total disability, direct harm, significant system or
asset loss, or irreversible significant environmental impact.

Critical 2

Incitement, manipulation, radicalization, or discrimination that may
result in mental or physical harm. Cause of consequential error to
many individuals, reversible significant environmental impact, or
considerate asset loss.

Major 3
Injury or cause of consequential error to a few individuals, reversible
environmental impact, or moderate asset loss.

Minor 4
Injury or cause of consequential error not resulting in any long term
harm, minimal environmental impact, or negligible asset loss.

Table 1: Hazard Severity Categories associated with the use of general multi-modal models [20 , 42]

Hazard Frequency Catastrophic Critical Marginal Negligible

(A) Frequent 1A 2A 3A 4A

(B) Probable 1B 2B 3B 4B

(C) Occasional 1C 2C 3C 4C

(D) Remote 1D 2D 3D 4D

(E) Improbable 1E 2E 3E 4E

Table 2: Hazard Risk Index [42] considering hazard frequency against its severity category
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ID Hazard Source Hazard Description Trigger Event Application/Domain Users/Agents Vector Protected
Characteristics

Assets Potential E�ects HRI Recommend Mitigations HRI (post)

H1 System
Design -
Model
Training

Subpopulations not
appropriately
identified or
represented within
distributions of the
dataset.

Use of CNN skin
cancer classifier
on skin on a
non-white skin
tone.

Human Health End user Data -
Training

Race Data Increased risk of false
negative, or
misclassification of skin
cancer as a benign or not
present.

2B

Table 3: Risk assessment template with ODD categories as fields
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